2-Methoxyestradiol, an endogenous mammalian metabolite, inhibits tubulin polymerization by interacting at the colchicine site.
نویسندگان
چکیده
A metabolite of estradiol, 2-methoxyestradiol (2ME), inhibits angiogenesis in the chicken embryo chorioallantoic membrane assay. Since 2ME causes mitotic perturbations, we examined its interactions with tubulin. In our standard 1.0 M glutamate system (plus 1.0 mM MgCl2 at 37 degrees C), superstoichiometric concentrations (relative to tubulin) of 2ME inhibited the nucleation and propagation phases of tubulin assembly but did not affect the reaction extent. Although polymer formed in the presence of 2ME was more cold-stable than control polymer, morphology was little changed. Under suboptimal reaction conditions (0.8 M glutamate/no MgCl2 at 26 degrees C), substoichiometric 2ME totally inhibited polymerization. No other estrogenic compound was as effective as 2ME as an inhibitor of polymerization or of the binding of colchicine to tubulin. Inhibition of colchicine binding was competitive (Ki, 22 microM). Thus, a mammalian metabolite of estradiol binds to the colchicine site of tubulin and, depending on reaction conditions, either inhibits assembly or seems to be incorporated into a polymer with altered stability properties.
منابع مشابه
A steroid derivative with paclitaxel-like effects on tubulin polymerization.
The endogenous estrogen metabolite 2-methoxyestradiol has modest antimitotic activity that may result from a weak interaction at the colchicine binding site of tubulin, but it nevertheless has in vivo antitumor activity. Synthetic efforts to improve activity led to compounds that increased inhibitory effects on cell growth, tubulin polymerization, and binding of colchicine to tubulin. This earl...
متن کامل2-Methoxyestradiol suppresses microtubule dynamics and arrests mitosis without depolymerizing microtubules.
2-Methoxyestradiol (2ME2), a metabolite of estradiol-17beta, is a novel antimitotic and antiangiogenic drug candidate in phase I and II clinical trials for the treatment of a broad range of tumor types. 2ME2 binds to tubulin at or near the colchicine site and inhibits the polymerization of tubulin in vitro, suggesting that it may work by interfering with normal microtubule function. However, th...
متن کاملMolecules in mammalian brain that interact with the colchicine site on tubulin.
Colchicine, a plant alkaloid, is a potent inhibitor of mitosis and other physiological processes that involve microtubules. These effects are mediated by the specific binding of colchicine to a high-affinity receptor site on tubulin, the major protein of microtubules. It seemed possible that the colchicine site on tubulin might also be the receptor for endogenous cellular molecules. We now repo...
متن کاملIn-silico Investigation of Tubulin Binding Modes of a Series of Novel Antiproliferative Spiroisoxazoline Compounds Using Docking Studies
Interference with microtubule polymerization results in cell cycle arrest leading to cell death. Colchicine is a well-known microtubule polymerization inhibitor which does so by binding to a specific site on tubulin. A set of 3',4'-bis (substituted phenyl)-4'H-spiro[indene-2,5'-isoxazol]-1(3H)-one derivatives with known antiproliferative activities were evaluated for their tubulin binding modes...
متن کاملIn-silico Investigation of Tubulin Binding Modes of a Series of Novel Antiproliferative Spiroisoxazoline Compounds Using Docking Studies
Interference with microtubule polymerization results in cell cycle arrest leading to cell death. Colchicine is a well-known microtubule polymerization inhibitor which does so by binding to a specific site on tubulin. A set of 3',4'-bis (substituted phenyl)-4'H-spiro[indene-2,5'-isoxazol]-1(3H)-one derivatives with known antiproliferative activities were evaluated for their tubulin binding modes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 91 9 شماره
صفحات -
تاریخ انتشار 1994